

Guide to accompany the world's most beautiful moon calendars: MoonLight™, MoonShine™, MoonDazzle™, Moons and Blooms™

Phases of the Moon 2015

	(NE	w)						FULL						
New Moon				First Quarter				Full Moon				Last Quarter		
Month Day Time				<u>Month</u>	Month Day Time		Month	Month Day Time			Month Day Time			
							Jan	5	4:53		Jan	13	9:46	
lan	20	13:14		Jan	27	4:48	Feb	3	23:09		Feb	12	3:50	
eb	18	23:47		Feb	25	17:14	Mar	5	18:05		Mar	13	17:48	
lar	20	9:36	E1	Mar	27	7:43	Apr	4	12:05	E2	Apr	12	3:44	
pr	18	18:57		Apr	25	23:55	May	4	3:42		May	11	10:36	
lay	18	4:13		May	25	17:19	Jun	2	16:19		Jun	9	15:42	
un	16	14:05		Jun	24	11:02	Jul	2	2:20		Jul	8	20:24	
ul	16	1:24		Jul	24	4:04	Jul	31	10:43		Aug	7	2:0	
ug	14	14:53		Aug	22	19:31	Aug	29	18:35		Sep	5	9:54	
ep	13	6:41	E3	Sep	21	8:59	Sep	28	2:50	E4	Oct	4	21:06	
Oct	13	0:06		Oct	20	20:31	Oct	27	12:05		Nov	3	12:24	
lov	11	17:47		Nov	19	6:27	Nov	25	22:44		Dec	3	7:40	
Dec	11	10:29		Dec	18	15:14	Dec	25	11:11					

Basic data shown here and in other tables provided by the U.S. Naval Observatory, Washington, D.C.

Daily Phase Changes and Rise/Set Times

The period of time in which the moon moves through one complete change of phases represents a synodic month - an average of 29.53 days. A lunation generally refers to the period between consecutive new moons - again, an average of 29.53 days. It is common to refer to the age of the moon in units of days. At about 7 days after New, the moon has passed through one fourth of its journey through a complete lunation, hence the name of First Quarter. About halfway through the cycle (14-15 days), the moon is seen in its Full illumination. At about 22 days of age, it is three-quarters through the cycle - the Last Quarter (sometimes called Third Quarter) phase. Finally, the moon comes back to New Moon after 29+ days. In the diagram below, the various phase appearances of the moon are illustrated along the days of age ruler. Names for the moon's illumination and waning to receding illumination. Also shown are mid-latitude rules of thumb for the rise and set times of the moon. More specific times of moonrise and moonrest are dependent on the provide heat the term wanter of moonrise and moonrest are dependent on the research of the none. More specific times of moonrise and moonrest are dependent on the provide heat the term was into a moonrise and moonrest are dependent on the none of the none. More specific times of moonrise and moonrest are dependent on the none of the none integration of the none of the none. More specific times of moonrise and moonrest are dependent on the none number of the number of the number of the none number of the number of the number of the number on many variables: location, date, altitude, localized terrain, and additional sun/earth/moon geometric information. Refer to our mooncalendar.com website for more information on resources for moon watchers

Age of Moon in Days	0 1 1 1	5		10	15	20		· 25 · ·	
Cycle	NEW)))))	First Quarter		FULL		Last Quarter	(((
29.53 days	1	- Waxing Crescent -	>	 Waxing Gibbous 	>	— Waning Gibbous —	>I	- Waning Crescent	→
Rise	with Sun	Rises mid-morning	Rises about noon	Rises mid-afternoon	Rises at sunset	Rises before midnight	Rises about midnight	Rises after midnight	Rises with Sun
Sets	with Sun	Sets after sunset	Sets about midnight	Sets after midnight	Sets at sunrise	Sets after sunrise	Sets about noon	Sets after noon	Sets with Sun
									©1998-2012 Celestial Products Inc.

Eclipses 2015

Eclipse dates are marked on the Phases of the Moon table. Times shown in that table are close to "mid-eclipse" values. (See Universal Time for discussion on conversion of Universal Time to other zone times.)

- E1 March 20 Total Eclipse of the Sun. Visible from Iceland, Europe, north Africa, north Asia, north Atlantic
- E2-April4-Total Eclipse of the Moon. Visible from Americas, Asia, Australia, Pacific. (In the U.S., this eclipse starts as the moon is setting in the early morning twilight. West coast viewers will have the best chance of seeing it in a dark sky.)
- E3 - September 13 - Partial Eclipse of the Sun. Visible from south Africa, south Indian, Antartica.
- E4 September 27/28 Total Eclipse of the Moon. Visible from Americas, Europe, western Asia, Africa, eastern Pacific, (From the U.S. the umbral portion begins about 9:07 pm EDT the evening of September 27 as the moon rises.)
- Eclipse Predictions by Fred Espenak, NASA's GSFC. The next total solar eclipse in the U.S. is August 21, 2017. For a detailed explanation of eclipses refer to the book, The Under-Standing of Eclipses, by Guy Ottewell.

Blue Moons

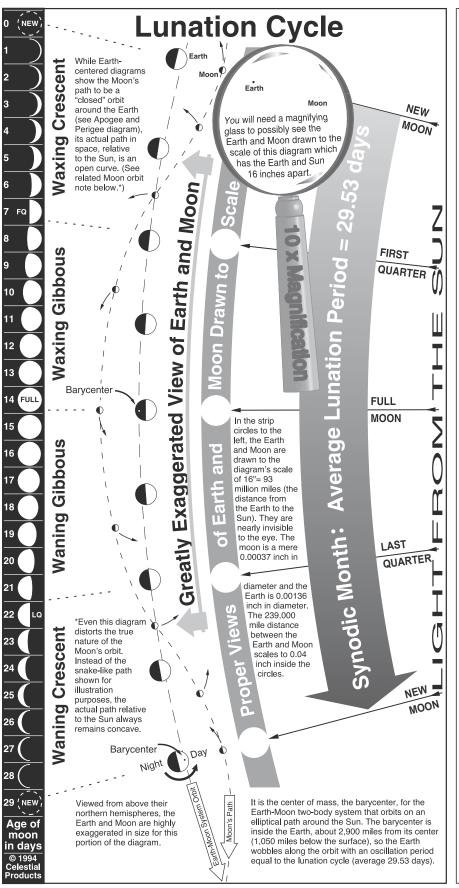
Should you get excited about seeing a Blue Moon? No, but this popular term has hopefully led to more interest in astronomy. Unlike other astronomical events - an eclipse, occultation, transit of Mercury, etc. - there is nothing to witness in the way of motion or change. Blue Moon definitions (yes, there is more than one!) are just human inventions to put a name on a counting fluctuation that occurs when one puts the grid of our calendar system on the natural moon phase cycle. Imagine two systems: the first a spigot that drips once every 29 seconds and the other your hand-held cup that repeatedly moves in and out under the spigot - 30 seconds under and 30 seconds out. In time, your cup will be under for 30 seconds and catch two drips instead of the usual one. So it is with our calendar system of months, season changeover dates, and the moon's phase cycle. Both of the following definitions are the result of looking for an extra count of a full moon inside one of our calendar cycles.

The widely known definition that has permeated western culture since the mid-20th century relates to the occurrence of a second full moon in a calendar month. Since the average lunation takes just over 29.5 days, it is possible to have two full moons within the 30 or 31 day calendar months as long as the first full moon occurs within the first day(s) of the month. One can find one of these Blue Moon months roughly every 2+ years, but this average is hardly a rule that can be used to predict future occurrences. This is due to the varying number of days in each calendar month, leap year, and the variance from the 29.5 day average lunation period. The next Blue Moons under this definition occur July 31, 2015 and January 31, 2018.

Now, let's look at a less familiar definition of a Blue Moon that evolved many decades ago. It refers to the third full moon within a season (astronomical Winter, Spring, Summer, Fall) having four full moons. Normally a season will have only three full moons, but occasionally, the lunation cycle meshes with a season so that it is possible to get in four full moons. Thus, February, May, August, and November are the only months in which one could have one of these "extra" seasonal full moons. The full moon of May 21, 2016 is the next Blue Moon using this definition since there are four full moons in the season period between the March 20 equinox and the June 20 solstice. Remember, this type of Blue Moon is the full moon of the last full month in that season. Since the seasons have beginning and ending dates partially into a calendar month, the Blue Moon will always be the third full moon in the season of four.

The name Blue Moon may otherwise apply to the rare occurrence of seeing a blue colored moon filtered through atmospheric particles that scatter more of the yellow-red wavelengths than the green-blue wavelengths that give it the color.

Astronomical Goodies!


Equinoxes and Solstices 2015 (See Universal Time article for conversion to your time zone)

Month Day	<u>Time (UT)</u>	Event	
Mar 20	22:45	March (Spring) Equinox	
Jun 21	16:38	June (Summer) Solstice	
Sep 23	8:20	September (Autumnal) Equinox	
Dec 22	4:48	December (Winter) Solstice	

MoonWatcher 2015 by W.L. Bohlayer ©2014 with All Rights Reserved. Published by Celestial Products, Inc.

CelestialProducts.com MoonCalendar.com 540-338-4040

Perigee and Apogee

Like most orbits, the path of the Moon around the Earth is an ellipse with a closest approach, perigee, and farthest point called apogee. (More accurately stated, this path is an ellipse with a focus on the barycenter. See note on the barycenter in diagram at left.) It is possible to visually detect the Moon's larger apparent size at perigee to that at apogee. While perigee and apogee can occur at any phase of the moon, try to capture a full moon at or near perigee and apogee using a medium focal length telephoto lens.

The additional increase in lunar gravitational force on the Earth at perigee can lead to higher high tides (and lower low tides) than would normally occur. Couple this increased lunar gravitational component with the Sun's gravitational force at a time when both the Moon and Sun are aligned with the Earth (New or Full Moon) and you have the ingredients for higher than normal tides–tides that are dreaded for their potential shore damage when a storm is present.

As a further complication to the Moon's orbit, the elliptical figure itself turns (precesses) forward relative to the background stars, taking nearly 9 years to complete one circuit.

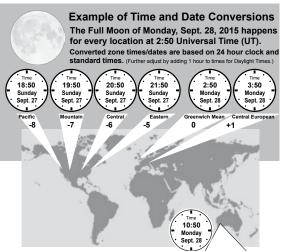
	Pred	cession Per	iod =	8 yr.	10 m	0.	
Barycenter							
		\mathcal{I}			M	oon	
Moon						lower	
Faste	r 🖌				/	<pre>/</pre>	
6	C	Earth		/	∕.		
	_					ogee	
	Davia					e distance 00 miles	
Aver	Perig age d	istance				n Earth	
	7,200						
	om E						
		-)15				
		ked directly on our mo	oon calenda		-		
	rige		Apogee				
Date H	r (UT)	Miles	Date		r (UT)		
			Jan	-	18	251,909	
Jan 21	20	232,473	Feb	-	6	252,370	
Feb 19	7	221,826	Mar	-	8	,	
Mar 19		222,192	Apr		13	- / -	
Apr 17		224,329	Apr		4	251,707	
May 15		227,437	May		22	251,186	
Jun 10		229,728	Jun		17	251,116	
Jul 5		228,101	Jul		11	251,553	
Aug 2	10	225,023	Aug		3	252,182	
Aug 30	15	222,631	Sep		11	252,565	
Sep 28		221,753*	Oct		13	252,518	
Oct 26		222,739	Nov	7	22	252,103	
Nov 23		225,444	Dec	5	15	251,531	
Dec 21	9	228,924					
		Data da 1 1				s by Jean Meeus.	

*September 27-28 is the shortest distance perigee of the year (221,753 miles) and coincident with the full moon. This leads to a slightly larger than normal looking moon on that date. Astronomers have known about these coinciding events for hundreds of years and call them perigee full moons, but they got dubbed by an astrologer as a "Supermoon." There is more hype than substance attached with the visual aspects to this event. More important is knowing that every perigee coincident with either a full or new moon has its greatest influence in higher and lower tide height/depth values.

Full Moon Names

The following names for full Moons come to us from American Indian and folklore sources. For commentary regarding these names, consult the *Astronomical Calendar* available at CelestialProducts.com.

January	Moon After Yule, Old Moon
February	Snow Moon, Hunger Moon, Wolf Moon
March	Sap Moon, Crow Moon, Lenten Moon
	Grass Moon, Egg Moon
May	Planting Moon, Milk Moon
	Rose Moon, Flower Moon, Strawberry Moon
July	Thunder Moon, Hay Moon
August	Green Corn Moon, Grain Moon
September	Fruit Moon, Harvest Moon*
October	Hunter's Moon
November	Frosty Moon, Beaver Moon
December	Moon Before Yule, Long Night Moon
	ý 8 8


*Usually, the full moon closest to the autumnal equinox is called the Harvest Moon, but for some, the Harvest Moon is that which occurs only on or after the autumnal equinox. In either case, this means that there are years when the October full moon may end up being called the Harvest Moon.

MoonWatcher 2015 by W.L. Bohlayer ©2014 with All Rights Reserved. Published by Celestial Products, Inc., 608 Coral Bells Ct. NW, Concord, NC 28027. Phone 540-338-4040. No part of this guide may be reproduced in any form without prior permission from the publisher.

Universal Time

All our publication event times are reported in Universal Time (UT). This is simply understood as the local time on the prime meridian (0 degrees longitude) which passes through Greenwich, England, hence the familiarity you may have with Greenwich Mean Time (GMT). Universal Time uses a 24 hour period with 0 hours representing midnight; 12:00 is noontime; 14:00 is 2 pm; 18:00 is 6 pm, and so forth.

Note: For zones or regions impacted by daylight time adjustments, add the value in play (1/2 hr., 1 hr., etc.) to the zone time. If result is over 24 hrs., subtract 24 and change date to the next day.

To convert Universal Time to your zone time (e.g., Eastern Standard Time), subtract an hour for each time zone west of Greenwich needed. (Add an hour for each zone east of Greenwich). Examples are shown in the Time Conversion Example diagram at left. Note that when the subtraction results in a value less than 0, the date reverts to the **previous** day and the hour value is adjusted by adding 24 hours to the negative value.

For users in the U.S., we have used a star to mark dates of Full and New Moons that may shift depending on your time zone. Thus, you should always check for a "star" and know your time zone affect on

time zone affect on whether the event date will shift to the previous day.